
Learning to Rank Hotels
Alec Hon

abh466@nyu.edu
New York University

Alex Dong

awd275@nyu.edu
New York University

Eric He

eh1885@stern.nyu.edu
New York University

Jesse Swanson

js11133@nyu.edu
New York University

Abstract
We benchmark learning-to-rank (LTR) and recommender

systems (RecSys) models on an e-commerce dataset pro-

vided by Rocketmiles: a hotel booking platform. In contrast

to other RecSys datasets, the Rocketmiles dataset contains

all search results per user search as well as an array of con-

textual features pertaining to queries, users, and items. From

the LTR space, we implement standard pointwise classifi-

cation models using boosting trees, as well as the Rocket-

miles default ranker which follows the LambdaMART learn-

ing methodology. For RecSys models, we implement the

standard alternating least squares (ALS) method as well as

two deep learning approaches: Mult-VAE and Hotel2Vec.

We find that for this particular dataset, standard classifi-

cation methods which leveraged contextual features were

able to achieve the highest performance, while RecSys meth-

ods which only considered the hotel and user were unable

to achieve good performance. Our code can be found at

https://github.com/EricHe98/sad_final_project.

1 Introduction
Recommender systems and information retrievals tradition-

ally use linear latent factor models such as matrix factoriza-

tion. Deep learning methods have been highly successful for

other high dimensional problems, such as natural language

processing and computer vision yet, as Dacrema, Cremonesi,

and Jannach [4] show, many recent deep learning meth-

ods fail to outperform well-optimized simple baselines. In

this paper, we compare deep learning methods to Rocket-

miles’ LambdaMART [2] production model. We implement

Mult-VAE [13], a variational autoencoder for collaborative

filtering, and learned hotel embeddings based on Word2Vec

[14]. These two methods are implemented for a proprietary

dataset provided by Rocketmiles.

Rocketmiles is a company that sells hotel bookings online.

Users search for hotels based on standard search criteria

on the Rocketmiles website, receive a recommended list of

hotels, and shop for hotel bookings. Rocketmiles stores the

interaction data, contextual information, and the original

search query. Currently, the recommendation model used in

production is LambdaMART.

We first provide an overview of the dataset and an overview

of the relevant evaluationmetrics.We then provide an overview

of the LambdaMART and Mult-VAE models as well as the

hotel embedding generation method (Hotel2Vec). Lastly, we

provide the results of our implementations.

2 Related Work
LambdaMART, the current production ranker at Rocketmiles,

is a gradient boosting tree with a customized loss function

[2]. It builds off a rich history of ranking models from the

information retrieval space, such as RankSVM [9] and Lamb-

daRank [3].

Learned vector representations of words are critical to

achieving state-of-the-art performance on natural language

processing (NLP) tasks. Ideas from learning vector repre-

sentations for words have successfully been applied to the

E-Commerce space. Embedding techniques have been ap-

plied to learn representations of items [7] or ads [8] that were

clicked or purchased . Airbnb has successfully integrated and

deployed learned embeddings into their production search

ranking RecSys [6]. The listing embeddings successfully en-

code location, price, listing type, architecture, and listing

style.

Latent Matrix Factorization methods are commonplace

in recommender systems, but are generally linear methods.

Deep Learning models are more expressive models that can

handle nonlinear functions, and within common deep learn-

ing architectures, two popular methods to learn latent fac-

tors are autoencoders and variational autoencoders. Liang et

al.(2018) [13] successfully implemented a variational autoen-

coder with multinomial loss to obtain better test ranking

metrics on the MovieLens and Netflix Prize Dataset when

compared to linear baseline models such as Matrix Factor-

ization and SLIM.

3 Data Overview
The dataset contains a year of search request data from the

Rocketmiles hotel booking dataset. The first ten months

from January to October comprise the training set, while

November is used for the validation set and December is

https://github.com/EricHe98/sad_final_project

, , Dong, He, Hon, Swanson

used for the test set. Relevant stats for the dataset splits are

posted in Table 1.

Each search result is tagged with a label corresponding to

a funnel stage:

• Label = 0: the user did not interact with the search

result

• Label = 1: the user clicked on the search result, taking

him/her to a page holding details about the hotel

• Label = 2: the user selects a specific room for the hotel,

taking him/her to a payment submission page.

• Label = 3: the user attempts to book the hotel.

For classification models, we opt to binarize the labels so

that any search result with an interaction (click, payment

click, book attempt) is labelled 1.

We comment on some difficulties withmodeling the dataset.

• The train, validation, and test sets follow fairly dif-

ferent data distributions since they are sampled from

different sections of the year. For example, December

booking activity contains a greater share of business

travelers since leisure travelers have generally booked

at other times in the year. However, this methodology

is closest to the conditions in which ranking models

are AB tested at the company, while also preventing

leakage by ensuring test data was generated after vali-

dation data, and validation data was generated after

training data.

• Anonymous users comprise just under half of the

search requests, causing difficulties for latent factor

models relying on user latent factors.

• Over two-thirds of the items do not have interactions

in the training dataset, making it difficult for item

factor models to handle recommendations without a

cold-start strategy.

• For privacy reasons, only one year of one product line

data could be released. The dataset contains approxi-

mately half a million user interactions and is low for

many modeling methods. Moreover, the interactions

per user follow a power-law distribution, meaning a

few users have outsized contributions towards inter-

action modeling.

• Although many contextual features are provided, fea-

ture selection is required to determine the highest

value features.

• The dataset is large (9 GB) and requires downsampling

for prototyping.

4 Evaluation
Our target performance metric is NDCG@10. We acknowl-

edge NDCG can be difficult to interpret since an "expected"

NDCG of a random shuffle is affected by the following fac-

tors:

1. Holding a label rate constant, more results in a query

lowers the expected NDCG

2. A higher of quantity positive labels in a query raises

the expected NDCG

3. Higher label values increases the expected NDCG as

DCG scores scale exponentially with the value of the

labels (e.g. a label of 3 has 2
3
more weight than a label

of 0)

4. Increasing 𝑘 for NDCG@k raises the expected NDCG.

To account for this, we computed a robust set of baseline

NDCG performances which we list below:

1. PopularitySort: one of the features in the dataset is

the regional share of bookings of a hotel at that cur-

rent point in time. Ranking by this feature results in a

baseline popularity ranker. For models which cannot

predict on all users or items, we fill with the popularity

score, making sure that the null predictions are ranked

below the results which do have predictions. We use

PopularitySort as a simple baseline model which we

aim to outperform.

2. RandomSort: we generate a random ranking across

the results by assigning randomly drawn scores to

results. Though the NDCG of a random sort can be

analytically computed given a dataset, the formula is

not simple, so we take the average NDCG across 100

random shufflings. We use RandomSort as the lower

bound of our performance.

3. DefaultSort: This is the actual order of items that ap-

pears on the Rocketmiles website. This order was gen-

erated by different productionmodels at different times

in the dataset.

4. CheatingSort: we train a LambdaMART model on the

test set to see what performance this model can get

through memorization. We use CheatingSort as an

expectation of the upper bound of our performance.

5 Models
5.1 Baseline Models
The information retrieval space classifies ranking models

into three variants based on their loss function: pointwise
models consider a search result on its own, pairwisemodels

compare two results in a search request to generate loss, and

listwisemodels consider metrics computed across the entire

list of search results in their loss function [12].

Based on this framework, a binary classification model

which simply attempts to test if a search result is interacted

with or not can be considered a pointwise ranking model.

We train logistic regression using the sklearn library and

boosting classification trees using the xgboost library.

For each model class, we train one model on all standard
features and another model on the core features which were

empirically shown to be important for the performance of

the baseline NDCG ranker. There are 47 standard features,

and 7 of them are classed as core features.

Learning to Rank Hotels , ,

Table 1. Dataset characteristics

Feature Total Train Val Test

Distinct users 51010 47767 5287 3450

Distinct hotels 175811 168829 84665 76836

Number of search requests 343868 323910 12648 7310

Number of search results 43944992 41040549 1835914 1068529

Clicked search results 317879 307445 7824 2610

Booked search results 116896 103264 8386 5246

Number of search requests made by anonymous users 143855 140426 2136 1293

Number of items with interactions in the dataset 69937 55592 9138 5207

Boosting models are trained for 100 trees, but to see the

model learning curve, for each model class we also train a

10-tree variant.

5.2 LambdaMART
LambdaMART is a gradient boosting tree using a listwise

loss function. For a given search query 𝑞, list of 𝑛 results

returned by that query {𝑟𝑖 }𝑛𝑖=1, and corresponding labels

𝑙 (𝑟𝑖), we write 𝑓𝑘 (𝑟𝑖) as the current score produced by our

gradient boosting tree with 𝑘 trees. Then the loss 𝜆 of the

result 𝑟𝑖 by the current model 𝑓𝑘 can be written as

𝜆(𝑟𝑖) =
(∑
𝑗≠𝑖

1[𝑙 (𝑟𝑖) > 𝑙 (𝑟 𝑗)]−𝜎 (𝑓𝑘 (𝑟𝑖)−𝑓𝑘 (𝑟 𝑗))
)
|ΔNDCG| (𝑖, 𝑗)

where 𝜎 is the sigmoid function, 1[𝑙 (𝑟𝑖) > 𝑙 (𝑟 𝑗)] is the
indicator function for whether 𝑟𝑖 has a higher label than 𝑟 𝑗 ,

and |ΔNDCG| is the change in the NDCG of the ranking

from swapping 𝑟𝑖 with 𝑟 𝑗 in a ranking ordered by the model

scores {𝑓𝑘 (𝑟𝑖)}𝑛𝑖=1.
The 𝜎 (𝑓𝑘 (𝑟𝑖) − 𝑓𝑘 (𝑟 𝑗)) term is the difference between the

predicted and true probabilities that 𝑟𝑖 has a higher label

than 𝑟 𝑗 , and can be interpreted as the gradient of the cross-

entropy loss in classifying whether 𝑟𝑖 has a higher label than

𝑟 𝑗 . With only this loss term and not the |ΔNDCG| term, the

model would be a pairwise ranking model, since it uses all

pairs of results to construct the loss.

The |ΔNDCG| (𝑖, 𝑗) term weights each (𝑖, 𝑗) pair by the im-

pact the pair has on the NDCG of the list. This is done to

focus the model on the results at the top of the list, which

have a bigger impact on both the user experience.

Using the 𝑘th tree to predict the gradient of the previous

model 𝑓𝑘−1 sequentially builds us a boostingmodel 𝑓1, 𝑓2, ..., 𝑓𝑘 .

5.3 Mult-VAE
5.3.1 Overview. Traditional matrix factorization models

determine latent factors in a reduced shared dimension be-

tween items and users. However, these methods are inher-

ently linear, and cannot capture more complex calculations

in determining the ideal latent state. In deep learning, archi-

tectures that are used to determine latent factors are Autoen-

coders and Variational Autoencoders. These models are are

two-stage architectures where the input is encoded into a

smaller latent dimension, then decoded to determinewhether

the reconstruction of the encoding is close to the original

input. However, unlike traditional matrix factorization meth-

ods, these deep learning methods are able to capture nonlin-

ear elements, and thus can perhaps learn more about latent

features given a interactions matrix.

We focus on Variational Autoencoders which uses tech-

niques from Variational Inference during training to encode

inputs into a latent space distribution rather than a latent

space encoding. In the case of Liang et al., the input is a user

𝑢’s click history 𝑥𝑢 , which we encode into a 𝐾-dimensional

latent distribution and then sample a latent representation

𝑧𝑢 from a standard Gaussian prior. We then decode 𝑧𝑢 via

a a nonlinear function 𝑓𝜃 and softmax function to produce

a probability distribution 𝜋 (𝑧𝑢) over all I items from which

the click history 𝑥𝑢 is to have been drawn from, where 𝑥𝑢
is assumed to have been sampled from a multinomial dis-

tribution, thus the proposed name of "Mult-VAE". For our

nonlinear 𝑓𝜃 , we utilize a standard multilayer perceptron,

with the architecture described in the following section.

5.3.2 Architecture and Loss Function. We designed the

our Mult-VAE to be very similar to Liang et al.’s Mult-VAE

architecture. The input to the encoder was a user’s click his-

tory 𝑥𝑢 ∈ RI. The model had one hidden layer of dimension

600 and latent layer of dimension 200. After sampling from

the latent dimension, we decode the latent dimension with

a hidden layer of size 600 then to return back to the item

dimension. Dropout of 0.5 was applied at the input layer,

and all nonlinearity activation functions used the Tanh func-

tion. The output of the encoder-decoder architecture was

softmaxed and multiplied by the number of total positive

interactions in the input, so that the input and the output

could be reasonably compared.

For our loss function, we used a standard variational au-

toencoder loss with annealing, as per Liang et al.[13]. This

consists of binary cross entropy loss on each entry in the

, , Dong, He, Hon, Swanson

output 𝑥𝑢 , summed with a KL-divergence from the decoded

distribution onto the encoded distribution. We also include

an annealing term 𝛽 which scales the KL-divergence term.

The annealing term linearly scales from 0 to 1 over a limited

range of epochs. As such, our loss function is

ℓ (𝑥𝑢, 𝑥𝑢) = 𝐵𝐶𝐸 (𝑥𝑢, 𝑥𝑢)) + 𝛽 𝐾𝐿(Enc(𝑥𝑢) | |Dec(𝑧𝑢))
For our annealing term 𝛽 , we tried multiple schedules,

which are described in Table 5 on the following page.

In addition, we also incorporated an early stopping mech-

anism, which was not implemented in the original Mult-VAE

paper. During the training process, we evaluated the valida-

tion loss over the validation set at the end of every epoch.

If the validation loss failed to decrease for 5 epochs, model

training would be stopped.

5.4 Hotel Embeddings
To generate hotel embeddings, we draw heavily on ideas

from Word2Vec [14]. In our hotel LTR application, user

sessions correspond to sentences in Word2Vec. A user ses-

sion is defined as a series of uninterrupted interactions with

the Rocketmiles website. Given a user session 𝑆𝑖 with 𝑛 in-

teractions, let 𝑆𝑖 be the set of interactions such that 𝑆𝑖 =

{𝑐1, 𝑐2, ..., 𝑐𝑛}. Our aim is to learn an embedding for each

listing 𝑐 𝑗 = vj where vj ∈ R32.
To learn the hotel listing embedding, we iterate over each

item in the user session and generate a context window of 5

items preceding the central item and 5 items after the central

item. Each item in this surrounding context is stored as a

positive pair with the central item. Context size is a potential

hyperparameter but we follow [6] and use 5 as the context

size since this generally captures item similarity [11].

C0User Session Ct-5
... Ct-1 Ct+1 Ct+5Ct Ck

...

Context

Input

... ...

Figure 1. A user session 𝑆𝑖 with a series of interactions

user interactions. The input item 𝐶𝑡 is paired with each of

the items in the contextual window [𝐶𝑡−5,𝐶𝑡+5] to generate

positive pair samples.

To generate negative contrastive pairs, we uniformly sam-

ple from unclicked items in the set of session search results

and uniformly sample from items outside of the set of ses-

sion search results. Let 𝑛𝑖𝑛 be the number of search results

sampled from unclicked results returned to the user and

𝑛𝑜𝑢𝑡 be the number of sampled hotels outside of the user

session. To determine the effect of sampling negative pairs

from different distributions, we generate hotel embeddings

with 𝑛𝑖𝑛 = {0, 5, 10} and 𝑛𝑜𝑢𝑡 = {0, 5}.

The generated positive and negative samples were used to

train a lookup table of embeddings. Based on the successful

application of item embeddings by Airbnb [6], we train a

hotel embedding vector vi ∈ R32. Given a sampled pair of

items 𝑝𝑖 = (𝑝𝑖,1, 𝑝𝑖,2) with label 𝑦 and prediction 𝑦, the loss

function is

ℓ (𝑦,𝑦) = 𝐵𝐶𝐸 (𝑦,𝑦)
where 𝑦 = 𝜎 (𝑝𝑖,1 · 𝑝𝑖,2) and 𝑦 ∈ {0, 1} where 𝑦 = 0 is a

negative label and 𝑦 = 1 is a positive label. We used an

Adagrad optimizer as it is well-suited for sparse data [5]

such as word or hotel embeddings in R32. The model was

trained for a maximum of 20 epochs with patience= 3 and

learning rate ∈ {0.1, 1, 10} based on the guidelines to train

good embeddings in [10]. We included these learned hotel

embeddings as features to the original LambdaMART model

to observe the impact of these learned features.

Figure 2. 100k positive (in context) and negative (out of con-

text) pairs were sampled and compared using the similarity

given by 𝜎 (𝑝𝑖,1 ·𝑝𝑖,2). The in context and out of context pairs

are highly differentiated due to the item embedding training

procedure.

6 Results
All methods were implemented on NYU Prince and Greene

High Performance Computing Clusters, utilizing the same

train/val/test splits. Models were chosen based on the best

validation NDCG, then evaluated on the test set. Table 2 is a

summary of our results utilizing our baseline models and on

the test set.

We also conducted ablation studies. One such study was

trainingmodels to use different feature sets, which are shown

in Table 3. Table 4 contains results with tree-based models

using 10 trees instead of the default 100.

The Rocketmiles production ranker greatly downsampled

the negative samples in the training set, with only around 8

million search results instead of 44 million. We were able to

preserve the majority of the performance, with an NDCG of

0.354.

Learning to Rank Hotels , ,

Table 2. Summary of Test NDCGs

Model Test NDCG

CheatingSort 0.466

XGBoost Classifier 0.393

LambdaMART 0.369

LambdaMART w/ Hotel2Vec 0.357

Mult-VAE 0.315

DefaultSort 0.311

PopularitySort 0.269

ALS 0.233

Logistic Regression 0.137

RandomSort 0.0814

Table 3. The Delta column shows the the change in NDCG

when training the model with a core subset of features.

Model Test NDCG Delta

LambdaMART 0.371 +0.002

Logistic classifier 0.361 +0.224

XGBoost classifier 0.393 +0.014

Table 4. Training on 10 trees instead of 100

Model Test NDCG Delta

LambdaMART 0.336 -0.033

XGBoost classifier 0.332 -0.047

6.1 Mult-VAE Experiments and Results
To determine the best possible configuration for the Mult-

VAE architecture, we experimentedwith on a few parameters,

each described in Table 5. Our Optimizer was Adam, with

learning rates mentioned in the table as well. For early stop-

ping, we stopped if the validation loss failed to decrease for

five epochs in a row.

While we had implemented early stopping originally, we

decided to not utilize it for one run, as we were not neces-

sarily trying to optimize on the Mult-VAE loss Function, but

rather trying to obtain the best validation NDCG. As mod-

els that stopped later tended to have higher NDCG, we had

implemented a model to run much longer than any of our

previous models, and obtained our best validation NDCG of

.3431. Figure 3 shows the validation NDCG per Epoch for

our final model.

For our best Mult-VAEmodel, we obtained a testing NDCG

of 0.3155. The decreased NDCG is most likely due to the fact

that Mult-VAE is not well setup for the cold-start problem,

as it assumes a user history, so as a result, for new users, we

implemented the popularity baseline to generate predictions.

Anonymous users aside, 15% of the users in the testing set

were first time documented users.

Figure 3. Validation NDCG over Epoch

6.2 Hotel Embeddings
To determine the effect of sampling negative pairs from

different distributions, we generate hotel embeddings with

𝑛𝑖𝑛 = {0, 5, 10} and 𝑛𝑜𝑢𝑡 = {0, 5}. The results for these exper-
iments are summarized in 6.

7 Discussion
Gradient boosting classification models obtained the best

performance on NDCG. This actually matches performance

in Rocketmiles-side tests run across products a year ago.

However, upstream processing requires the predicted prob-

abilities to be pairwise calibrated, i.e. of the results {𝑟 }1
which have a probability prediction of 30% and the results

{𝑟 }2 which have a probability prediction of 10%, then the

results in {𝑟 }1 should be booked three times as much as the

results in {𝑟 }2. In this case, LambdaMART which explicitly

calibrates pairwise preference probabilities was superior to

the classification models.

For this particular dataset, latent factor methods gener-

ally did not perform as well as feature-based methods. The

user-item interaction matrix is extremely sparse, with most

users not having more than one interaction and most items

not having any bookings. This makes it very difficult for

latent factor methods to learn good hidden representations.

With many more interactions, it’s possible that latent factor

methods might eventually exceed performance of feature-

based methods. However, for the hotel ranking problem it

is natural to be in a "continuous cold-start" state [1]; even

if a user has many bookings, it is difficult to guess whether

a user is looking to book resorts for vacation or hotels near

city centers for business conventions even when they come

back.

, , Dong, He, Hon, Swanson

Table 5. Mult-VAE Experiment Descriptions

Annealing Early Stop Learning Rate Hidden Dim Latent Dim Num Hidden Layers Epochs Best Val NDCG

None Yes 0.001 600 200 1 52 0.1808

0.02 Yes 1e-3 600 200 1 48 0.1888

0.02 Yes 1e-3 600 200 2 11 0.1477

0.02 Yes 1e-3 800 400 2 21 0.1323

0.02 Yes 1e-4 600 200 1 18 0.2135

0.02 Yes 1e-5 600 200 1 179 0.2067

0.005 Yes 1e-3 600 200 1 75 0.2188

0.005 Yes 1e-4 600 200 1 75 0.2171

0.005 No 1e-3 600 200 1 650 0.3436

Notes: If the number of hidden layers is more than one, we simply use the same amount of hidden nodes for the other hidden layers. Each

model took about six minutes per epoch.

Table 6. Summary of validation NDCGs for different posi-

tive and negative sampling methods. 𝑛𝑖𝑛 is the number of

negative contrastive samples in the user session and 𝑛𝑜𝑢𝑡 is

the number of negative contrastive samples from outside the

user session. Different negative sampling methods appeared

to have little impact to the performance of the model, likely

due to more informative contextual features.

𝑛𝑖𝑛 𝑛𝑜𝑢𝑡 NDCG

5 0 0.356

10 0 0.356

20 0 0.356

0 5 0.356

5 5 0.356

7.1 Importance of features
Though latent factor models underperformed compared to

feature-based models, using too many features also under-

performed. On an absolute basis, the data only covered 1 year

of data, and only had around half a million interactions. As a

result, even a simple logistic regression was able to achieve

very good performance.

In previous experiments by Rocketmiles, they found that

including query-standardized features such as the

srq_price_zscore, defined by 𝑧 =
price − 𝜇𝑞

𝜎𝑞
, where 𝜇𝑞 is the

average price of results in the query and 𝜎𝑞 is the standard

deviation of the price of results in the query, led to similar

performance for pointwise classification models and listwise

ranking models. The XBGoost classification tree achieved

the top performance.

Though using some of the provided features were critical,

many features were deemed counterproductive and noisy, as

dropping them improved performance for all feature-based

models. The embeddings features added by theMult-VAE and

Hotel2Vec models also failed to improve model performance.

It is possible that since the supplied the dataset is only a

small part of the full data, many contextual features were

ultimately more informative to account for seasonal and

regional trends.

7.2 Future Work
Much of the work done for this project was proof-of-concept,

and can be redeployed on the full Rocketmiles dataset and in-

frastructure. From an engineering perspective, we were able

to test out MLFlow, a common framework for training and

evaluating machine learning models. From the data science

side, we were able to build a robust set of baseline models,

including latent factor models which we did not test before.

We plan to retest the models on the full Rocketmiles

dataset which is over an order of magnitude larger, as well

as possibly using the Hotel2Vec embeddings approach to

power hotel recommendations given a clicked hotel (rather

than ranking all hotels for a given search query).

Some work was also done to model inverse propensity

scores for each ranking position, but because it used data not

shared with the entire team and because we were unable to

complete it, we left it out of this paper. The work, however,

continues.

8 Conclusion
Our goal was to outperform Rocketmiles’ the production

model. We implemented several baseline methods as bench-

marks for comparison to developedmodels.We (re)implemented

two methods, Mult-VAE and generating hotel embeddings

using Hotel2vec, and tested a few combinations of hyper-

parameters. We found that Mult-VAE performs surprisingly

well, given that it is a collaborative filtering method, and

does not use any context information, while using hotel em-

beddings ended up decreasing LambdaMART’s performance.

We also note an interesting phenomenon where the vali-

dation NDCG for Mult-VAE increases as the loss function

plateaus.

Learning to Rank Hotels , ,

9 Attribution
Eric prepared the dataset for the group, constructing the base-

linemodels (XGBClassifier, logistic regression, ALS), running

LambdaMART, and implementing an evaluation script used

for every model. Alex and Alec contributed to the Mult-VAE

portion of the analysis, which included preprocessing the

data to work with PyTorch, reimplementing the model in

PyTorch, and generating the predictions. Jesse trained and

evaluated the Hotel2Vec embeddings with PyTorch, Spark,

and LambdaMART.

References
[1] Lucas Bernardi et al. The Continuous Cold Start Problem in e-Commerce

Recommender Systems. 2015. arXiv: 1508.01177 [cs.IR].
[2] Chris J.C. Burges. From RankNet to LambdaRank to LambdaMART:

An Overview. Tech. rep. 2010.
[3] Quoc Viet Le Chris Burges Robert Ragno. Learning to Rank with

Nonsmooth Cost Functions. 2006.
[4] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach.

“Are We Really Making Much Progress? A Worrying Analysis of

Recent Neural Recommendation Approaches”. In: Proceedings of the
13th ACM Conference on Recommender Systems. RecSys ’19. Copen-
hagen, Denmark: ACM, 2019, pp. 101–109. isbn: 978-1-4503-6243-6.

doi: 10.1145/3298689.3347058. url: http://doi.acm.org/10.1145/
3298689.3347058.

[5] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient

Methods for Online Learning and Stochastic Optimization”. In: Jour-
nal of Machine Learning Research 12.61 (2011), pp. 2121–2159. url:

http://jmlr.org/papers/v12/duchi11a.html.
[6] Mihajlo Grbovic. Listing Embeddings in Search Ranking. May 2018.

url: https://medium.com/airbnb-engineering/listing-embeddings-
for-similar-listing-recommendations-and-real-time-personalization-
in-search-601172f7603e.

[7] Mihajlo Grbovic et al. “E-commerce in your inbox: Product rec-

ommendations at scale”. In: Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining.
2015, pp. 1809–1818.

[8] Mihajlo Grbovic et al. “Scalable semantic matching of queries to

ads in sponsored search advertising”. In: Proceedings of the 39th
International ACM SIGIR conference on Research and Development in
Information Retrieval. 2016, pp. 375–384.

[9] Thorsten Joachims. Optimizing Search Engines using Clickthrough
Data. 2002.

[10] S. Lai et al. “How to Generate a Good Word Embedding”. In: IEEE
Intelligent Systems 31.6 (2016), pp. 5–14. doi: 10.1109/MIS.2016.45.

[11] Omer Levy and Yoav Goldberg. “Dependency-Based Word Embed-

dings”. In: Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Baltimore,

Maryland: Association for Computational Linguistics, June 2014,

pp. 302–308. doi: 10.3115/v1/P14-2050. url: https://www.aclweb.
org/anthology/P14-2050.

[12] Hang Li. A Short Introduction to Learning to Rank. 2011.
[13] Dawen Liang et al. Variational Autoencoders for Collaborative Filter-

ing. 2018. arXiv: 1802.05814 [stat.ML].
[14] Tomas Mikolov et al. Efficient Estimation of Word Representations in

Vector Space. 2013. arXiv: 1301.3781 [cs.CL].

https://arxiv.org/abs/1508.01177
https://doi.org/10.1145/3298689.3347058
http://doi.acm.org/10.1145/3298689.3347058
http://doi.acm.org/10.1145/3298689.3347058
http://jmlr.org/papers/v12/duchi11a.html
https://medium.com/airbnb-engineering/listing-embeddings-for-similar-listing-recommendations-and-real-time-personalization-in-search-601172f7603e
https://medium.com/airbnb-engineering/listing-embeddings-for-similar-listing-recommendations-and-real-time-personalization-in-search-601172f7603e
https://medium.com/airbnb-engineering/listing-embeddings-for-similar-listing-recommendations-and-real-time-personalization-in-search-601172f7603e
https://doi.org/10.1109/MIS.2016.45
https://doi.org/10.3115/v1/P14-2050
https://www.aclweb.org/anthology/P14-2050
https://www.aclweb.org/anthology/P14-2050
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1301.3781

	Abstract
	1 Introduction
	2 Related Work
	3 Data Overview
	4 Evaluation
	5 Models
	5.1 Baseline Models
	5.2 LambdaMART
	5.3 Mult-VAE
	5.4 Hotel Embeddings

	6 Results
	6.1 Mult-VAE Experiments and Results
	6.2 Hotel Embeddings

	7 Discussion
	7.1 Importance of features
	7.2 Future Work

	8 Conclusion
	9 Attribution

