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Abstract

The problem of protein folding is centered around understanding how the chain
of amino acids comprising a protein folds into its stable, low-energy conforma-
tion. Because the laws of physics which govern the process are well-defined,
protein folding can be simulated on computers. However, doing so requires a
tremendous amount of computation and generates a large amount of folding
data.

This paper explains how to build Markov State Models to analyze protein
folding data. As a form of probabilistic graph, Markov State Models can be
used to process folding data generated from molecular dynamics data into a
human-interpretable representation. Under the Markov State Model framework,
protein folding is viewed as a probabilistic process rather than a deterministic
one, and uncertainty around estimates can be quantified and used to focus
simulation efforts to reduce the number of computations needed by two orders
of magnitude.
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Figure 1: Examples of computer-generated protein folds by Mohammed Al-
Quraishi

1 A brief introduction to the protein folding
problem

1.1 The importance of protein folding

Proteins govern nearly all biological processes, such as metabolizing food, trans-
porting molecules, or providing structure to cells. A protein is created as a se-
quence of amino acid polymers, which folds into a three-dimensional structure
or conformation according to the physics of the amino acids comprising them
and external forces such as water molecules or other proteins. For the vast ma-
jority of proteins, there is only one unique shape which the protein settles into,
termed the native conformation or native state.

The native conformation determines a protein’s ability to form chemical
bonds with other molecules. In turn, a protein’s chemical bonding properties
determines its ability to perform its desired function; thus, it is commonly said
that a protein’s structure informs its function. The practical benefits of under-
standing a protein’s native state include, but are not limited to:

e modeling the dynamics of a protein’s properties under mutations or mis-
foldings, especially in relation to diseases caused by malfunctioning pro-
teins

e discovering drugs which allow us to control the activation or deactivation
of target proteins

e identifying and tracing a protein’s function through the course of its evo-
lutionary history



Unfortunately, the minuscule size of proteins make it extremely difficult to
map their structures. The only information of most known proteins are their
amino acid sequences, derived from genomics data. Filling this gap is the goal of
the protein folding problem. From a practical perspective, a mapping between
a protein’s sequence data and its corresponding structure would link what is
known about a protein and what is needed to be known in order to usefully
work with it. But more broadly, understanding protein structure provides the
theoretical scaffolding needed to analyze biological systems as an emergent prod-
uct of their underlying components.

1.2 Physics underlying protein folding

The protein folding process is governed entirely by physical laws. The primary
ones are:

1. The formation of hydrogen bonds between an amino acid residue with
other residues in the chain, or the surrounding solvent

2. van der Waals forces which attract or repel nearby atoms based on their
electrostatic charges

3. Chemical affinities towards the solvent, e.g. hydrophobia of certain molecules
to water

Many of the above forces are functions of temperature and acidity. Moreover,
the presence of salts, folding catalysts, or molecular chaperones can regulate the
environment in which the protein folds.

Each of these forces push the amino acid chain towards conformations that
lower the Gibbs free energy. The native conformation is typically attained
when the free energy is globally minimized, but sometimes proteins can be
trapped in a conformation which attains only a local energy minimum. Having
proteins misfold in such a manner is a known or suspected cause of many diseases
such as Alzheimer’s or Huntington’s.

The vast majority of proteins fold at speeds on the order of nanoseconds to
hundreds of milliseconds. Though quick on human timescales, this speed belies
the complexity of simulating the process.

2 Using Molecular Dynamics to simulate pro-
tein folding

Since all physical laws governing protein folding are well-understood, computers
can be used to simulate the protein folding process; this field is called molecu-
lar dynamics or MD. Unfortunately, simulations of the protein folding process
require a tremendous amount of computing power to simulate the folding dy-
namics of even a single protein.



The primary bottlenecks are the number of particle interactions involved
and the amount of time steps to take. Though proteins fold in milliseconds
(1073 seconds), simulations take timesteps on the order of femtoseconds (10715),
requiring a quadrillion iterations to simulate a full second of folding [1]. For
each iteration, all interactions between atoms must be computed. This includes
atoms belonging to the enveloping solvent, usually water molecules, which can
be more numerous than the protein itself.

To sacrifice some accuracy in order to cut computational cost, MD simula-
tions make various simplifications. [1] gives some examples:

e Electrostatic forces are simulated as point charges which might ignore
effects such as the electric dipole moment.

e Stretching and bending of chemical bonds are modeled using harmonic
functions instead of more accurate ones which model anharmonicity.

e Water molecules serving as solvent might be modeled as rigid or having a
uniform temperature, or modeled only implicitly as a force field exerting
random forces on the protein.

Figure 2: Anton, a supercomputer built by D.E. Shaw Research specifically for
protein folding computations. [10] Photo by Matt Simmons

Even with these speedups, MD simulations are still too slow to be useful
purely for structure prediction. For example, a supercomputer purpose-built
for protein folding computations, Anton, took around 100 days to simulate a



single millisecond of the folding process for a protein comprised of around 1000
atoms [10].

3 Markov State Models for interpreting data
from MD simulations

Despite their suboptimal use for structure prediction, MD simulations are still
valued because they depict the folding process itself. Apart from being theoret-
ically important, this is also of special interest in the study of diseases which
are caused by proteins misfolding away from the standard resting conformation;
some examples where misfolded proteins are the suspected cause of a disease
include Alzheimer’s and Huntington’s.

To understand folding trajectories of a protein, it is not enough to simulate a
single fold of the protein. Instead, a protein’s folding process must be simulated
many times to derive an understanding of the probability space over the protein’s
possible conformations. As a result, scientists working on large MD simulations
must be able to both gather and comprehend vast amounts of time series data
of a protein’s probable conformation.

A ubiquitously used tool in MD, popularized by the Pande lab at Stanford
is the Markov State Model or MSM [6]. MSMs group clusters of conforma-
tions into states of a Markov chain; the folding process is viewed probabilisti-
cally as walking through states of the chain until reaching an absorbing state
corresponding to the resting conformation. MSMs grant the ability to:

1. Group together similar conformations into human-comprehensible clusters
2. Map which folding pathways are most favored by the protein

3. Adaptively sample conformations contributing high uncertainty to rele-
vant metrics (such as the folding rate of the protein) to save computation
time

We begin with an intuitive example of MSMs, then explain how to construct
and quantitatively analyze an MSM.

3.1 An example of an MSM

Mathematically, the MSM is parameterized by a macrostate-macrostate transi-
tion matrix 7', where the 4, jth entry T; ; represents the probability of transi-
tioning to macrostate j while in macrostate i.

Each macrostate is comprised of a multitude of microstates, themselves
smaller clusters of conformational space. While the microstates are clustered
according to structural distances measuring how far apart two conformations
are in physical space, the macrostates cluster microstates based on kinetic dis-
tances measuring how frequently two conformations transition between each
other during folding.



Figure 3: Different probable states of a protein fold derived by learning a Markov
State Model on Molecular Dynamics simulations in [6]

This hierarchical clustering is performed because while the ideal clusters
should group together conformations which are close in free energy space, map-
ping free energy space is extremely difficult from both a computational and
theoretical perspective. Thus, structural and kinetic distances are mixed to-
gether as an approximation to free energy space.

gives us a pictorial depiction of an MSM. Each node represents
a supercluster of conformations termed a macrostate, with the relative size of
the node being proportional to the expected time spent in that cluster. The
directed edge * — y from two arbitrary macrostates z and y in the MSM is
shown as an arrow, with the arrow’s relative size being indicative of the speed
and/or relative likelihood of transitioning to state j from state i.

The protein starts in state a, bordered in red, and eventually folds into the
resting conformation at state n, bordered in green. The most direct and com-
monly used path is directly through state m, but in some situations the protein
was shown to detour through states b,c,e, and j before reaching m. Rather
than just considering one or two folding trajectories, MSMs generate proba-
bility distributions over folding pathways, which can be sampled by stepping
through the macrostate’s transition matrix, then emitting a microstate based
on the particular macrostate sampled, much as in a Hidden Markov Model.



3.2 Constructing the MSM
3.2.1 Clustering microstates using a modified k-means algorithm

The first step in constructing an MSM is deciding how to create the aforemen-
tioned clusters of conformations. We walk through an approach implemented
by the Pande lab in their ‘MSMBuilder* 3] software package is a variation of the
k-means clustering algorithm in which centers for new clusters are iteratively
initialized to occupy the point furthest from all the existing cluster centers [7].
This variation of k-means encourages clusters to have roughly equal radii. The
metric used for this clustering algorithm is a structural (rather than kinetic)
distance between two conformations known as Root Mean-Squared Deviation,
or RMSD.

This methodology is used to create fine-grained clusters, termed microstates.
Typically between 10,000 and 100,000 microstates are created.

3.2.2 Computing the microstate transition probability matrix T

The transition probabilities between microstates ¢ and j can be naively com-
puted as the mazimum likelihood estimate (MLE), corresponding to the number
of times state i transitioned to state j, divided by the total number of transitions
from state i to other states k # j (including k = ¢). If C;; corresponds to the
1, jth entry of a count matriz tabulating the number of times state ¢ transited
to state j, the MLE is given the formula

>k Cik

The MLE, however, can lead to noisy estimates for sparsely sampled mi-
crostates. Moreover, it might not satisfy the property of detailed balance,
a kinetic property of systems at equilibrium stating that the average rate of
transition from state i to state j is equal to the average rate of transition from

state j to state i. A Markov chain is said to be reducible or to have detailed
balance if the following equation is satisfied for arbitrary states ¢ and j:

T, =

mili; = 7Ty

where 7; is the stationary probability of being in state 7.

Thus, a more principled way of estimating the transition probabilities is to
restrict the space of Markov chains to the ones satisfying detailed balance. A
closed-form solution for the MLE reversible Markov chain X in this space is
given by the following equation:

T Cij+Cji
UTe G
T; T,

According to [7], this method works well for small MSMs, but takes time
to converge for larger matrices and can see poor performance when the MD
simulation is noisy.



Given the microstate transition matrix M, kinetic relationships can be used
to further cluster microstates into macrostates. This can be done by looking
at the dominant eigenvectors of M. One method, known as Perron Cluster
Cluster Analysis or PCCA, partitions microstates into meta-stable macrostates
by finding a grouping such that the corresponding macrostate transition ma-
trix T of specified size d has the largest possible trace [5]. Having the largest
trace indicates that each macrostate groups together as many kinetically similar
microstates as possible, since inter-state transitions are small.

3.2.3 Incorporating Bayesian priors over MSM parameters

A powerful, but computationally demanding way to evaluate estimations of the
macrostate-macrostate transition matrix 7', the macrostate-microstate emission
matrix ©, and the choice of macrostate clustering or lumping L is given in [2].
The method is to further impose priors on the macro and microstates and
use those priors to compute Bayes factors. The Bayes factor is a ratio of two
posterior probabilities; since the posterior factors in the prior, complex models
are penalized by the Bayes factor since even they have a lower prior probability;
thus, to be accepted over a simpler model, a more complex model must have a
sufficiently higher likelihood. The recommended methodology is as follows:

The prior over © is a Dirichlet prior. The emissions probability for a state
theta; follows a Multinoulli distribution, whose conjugate prior is Dirichlet.

The prior over T' can also be a Dirichlet prior over stochastic matrices, but
from the previous discussion, a better prior is the Dirichlet prior restricted to
the space of stochastic matrices satisfying detailed balance. The density has a

closed form solution, but the formula is quite complex. The derivation is found
in [4].

Selecting L using Bayes factors The optimal L for a certain macrostate
size d can be found using PCCA or its more robust variants, PCCA+ and
PCCA++. Given two such choices L; and Ly from the data D, the Bayes
factor can be computed as the ratio of the posteriors

P(Li|D) _ P(DILy) P(L1) _ Jy Jo P(DIL1, T, ©)P(T, O]Ly)
P(L2[D) ~ P(D|L2) P(L2) ~ J; Jo P(D|L2.T.0)P(T,O|Ly)

Interpreting the Bayes factor is straightforward. If the Bayes factor is less
than 1, then Lo should be preferred over L;. If the Bayes factor is greater
than 1, then L; should be preferred to L;. If the priors over T and © are
both Dirichlet, then an analytical solution for the Bayes factor can be given.
Using the detailed balance Dirichlet prior for T', however, requires Monte Carlo
integration.



3.3 Validating the Markovian properties of an MSM

An MSM makes the fundamental memoryless or Markovian assumption that our
expectation of future states is independent from the knowledge of past states
when conditioned on the present; that is, information on the current conditions
of a protein is all that is needed to forecast its future folds. This assumption is
fundamentally correct for individual conformations, but improper aggregations
of conformations can violate the Markov assumption.

3.3.1 A non-Markovian aggregation of states

A straightforward example of an improper aggregation would be aggregating
states ¢ and m in into a hypothetical superstate 0. The Markovian
assumption would say that given the protein is in superstate o, no further in-
formation is needed to predict the future folding trajectory. However, if the
protein transitioned into state o from state b, it is highly likely that the protein
will go towards states e or b or a, since the protein is actually in state ¢ € 0. On
the other hand, if the protein entered state o from state a, it is almost certain
to be in state m € o and therefore is almost certain to transition to the resting
conformation n.

The superstate o thus exhibits non-Markovian properties, since its transition
probabilities are largely a function of what state the protein was in previous to
o, rather than depending solely on o itself.

3.3.2 Geometrically distributed leaving times

The Markovian assumption implies strong distributional effects which can be
cast as statistical tests for empirical verification. One such test observes that for
a candidate transition matrix 7', the expected amount of time a fold remains in
a specified state ¢ follows a geometric distribution. The geometric distribution
parameter p; for state ¢ corresponds to the probability of remaining in state
i upon experiencing a pass through 7'; this is simply 7;;. If the empirical
leaving times are not distributed according to their corresponding geometric
distributions, this is a strong indication of non-Markovian dynamics.

3.3.3 The Swope-Pitera eigenvalue test

Another test is the Swope-Pitera eigenvalue test described in [9], which
examines the magnitude of the eigenvalues of the transition matrix 7" compared
to the eigenvalues of T".

To establish the foundations of the Swope-Pitera test, some of the spectral
properties of aperiodic and irreducible Markov chains must first be presented.
Such a Markov chain has all eigenvalues but one less than 1, with this last
eigenvalue being equal to 1 (unity). An eigenvector with eigenvalue p repre-
sents a state distribution which decays towards the stationary distribution at
rate p! where ¢ is the number of transitions through the transition matrix 7'
Thus, the states with larger eigenvalues decay more slowly, while the eigenvector
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corresponding to unity represents the state which does not decay, the station-
ary distribution itself. The eigenvectors of the matrix T* are equivalent to the
eigenvectors of T, with the corresponding eigenvalues iy = pt.

The Swope-Pitera test evaluates whether the eigenvalues of an empirically
constructed matrix with timestep length ¢ are exponentially decaying as ex-
pected. That is, the eigenvalues {p;} of the length-t transition matrix T;
should be roughly equivalent to {u'}, where {u} is the set of eigenvalues of
the length-1 transition matrix 7;. Lack of exponential decay is an indication of
non-Markovian dynamics.

3.4 Adaptive Sampling with an MSM

Given an MSM, it is possible to estimate quantities such as the mean first
passage time, which corresponds to the expected time a conformation takes to
fold. Importantly, we can also compute our uncertainty around these estimates
and even identify which states are contributing the most variance. This pro-
vides a critical advantage, since by upsampling or adaptively sampling these
uncertainty-contributing states, sufficiently low uncertainty can be achieved us-
ing orders of magnitudes less simulation steps, according to [6]. The adaptive
sampling method discussed here comes from [3].

3.4.1 Estimating a distribution for the states of T’

To measure the uncertainty of metrics such as mean first passage time, we
must first measure the uncertainty of the underlying transition probabilities.
Recall that the distribution of transition probabilities for 7' is a Multinoulli.
Since the Multinoulli’s true parameters are unknown, we assume a distribution
over possible Multinoulli distributions using the conjugate prior, the Dirichlet
distribution.

If the prior over the Dirichlet parameters is the vector a and the empirical
transitions form the counts z, then the posterior distribution is given by a
Dirichlet with parameter p = o + z.

Directly using the Dirichlet distribution for sampling transitions in T is
computationally expensive, so the distribution is approximated using a mul-
tivariate normal distribution or MVN. A Central Limit Theorem justifies the
approximation with the statement that the Dirichlet distribution approaches a
Multivariate Normal distribution as the number of samples goes to co.

Specifically, for a specific state i, as the vector of Dirichlet counts p; has

magnitude w; = |p;| — oo and as Bi — v; for some fixed probability distri-
s

K3
bution wv;, the Dirichlet distribution parameterized by p; converges pointwise

to a Multivariate normal distribution with parameters pnorm,i = Hdir, | and
w
1
covariance matrix ¥; = ————— (w; t; — i1 ).
3 wz(wz + 1)( L,Uz /J'Z:uz )

11



3.4.2 Monte Carlo estimation of a target metric’s variance

The transition matrix T" allows the deterministic calculation of relevant metrics.
One example is the mean first passage time, the expected amount of time it
takes a given conformation to fold into the resting conformation. The formula
for mean first passage time x; of state ¢ given the transition matrix 7" is as
follows:

. At+ Y8 2Ty i £ K
o i=K

where K is the row of T corresponding to the resting conformation.

Frequently we are also interested in our uncertainty around these metrics.
Note that this uncertainty is a concept separate from the natural variance of the
metric; the former is an estimate of our lack of knowledge based on the Dirichlet
distribution of each row in 7', while the latter is an estimate of the actual
variance in folding time based on the hypothetical true Multinoulli distribution
of each row in T

The variance of the Dirichlet distribution around a particular row can be
reduced by generating more samples of the corresponding state, but the variance
of the Multinoulli is a fixed constant. Thus, when we discuss reducing variance,
we are talking about reducing the variance of our Dirichlet estimate of the true
Multinoulli distribution rather than the variance of the Multinoulli itself.

When a formula for the uncertainty of a target metric is intractable or incon-
venient to compute, it can be estimated by generating random draws from the
corresponding rows of T', or their MVN approximations, to create Monte Carlo
samples of the target metric from which the uncertainty can be estimated.

For many metrics, this formula for the uncertainty cannot be decomposed
into a sum of the variances of individual rows of T unless a first-order Taylor
approximation of the metric is performed. This approximation reduces the
formula to a set of linear equations with easily solvable, closed-form solutions.

3.4.3 Targeted sampling to achieve minimal variance

Given an estimate of variance of the target metric which can be decomposed
into the contributions of the individual rows of T, it is straightforward to design
an adaptive sampling algorithm to reduce this variance.

Given a fixed number of additional samples m to generate, states should be
ranked in descending order of their expected change in variance by adding those
m samples. Then m simulations starting from microstates within state ¢ can be
started.

The results of these m simulations can be used to recompute the estimate
of T and determine the next state to simulate m times.

12



4 Conclusion

MSMs are a critical auxiliary method for protein folding molecular dynam-
ics research. By grouping conformations into a hierarchical microstate and
macrostate representation, MSMs provide high-level summaries of the distribu-
tion of possible protein folding trajectories. By being able to quantify and at-
tribute uncertainty to individual states, MSMs allow focused simulations which
converge to the required confidence level two orders of magnitude faster than
naively repeating simulations.
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