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Abstract
We benchmark Direct Methods using a variety of models

on commonly used bandit datasets and find Direct Methods

are rather unreliable compared to other methods. Simple

direct methods consistently performs inferior to importance-

weightedmethodswhile improved versions, such as importance-

weighted and doubly robust direct methods performs much

better; yet still shares its limitations with simple direct meth-

ods. By using both actual bandit dataset and synthetic bandit

datasets based on actual multiclass classification datasets,

we explored how inductive Direct Methods are to different

flavors of covariate shifts.

Our code can be found at https://github.com/EricHe98/
direct_method.

1 Introduction
We are concerned with the problem of off-policy evalua-

tion in the contextual bandit setting. The contextual bandit

setting is as follows: given a context 𝑥 ∈ X drawn from a dis-

tribution Ω(𝑥), one of finitely many possible actions 𝑎 ∈ A
is selected according to a policy 𝜋 (𝑎 |𝑥), and the action re-

sults in a real-valued reward 𝑟 ∈ R drawn from a distribution

𝛿 (𝑟 |𝑎, 𝑥). For any given policy 𝜋 , we can estimate the value
𝑉 (𝜋) of the policy by its expected reward

1
:

𝑉 (𝜋) = E𝜋,Ω (𝑥) [𝛿 (𝑟 |𝑎, 𝑥)] (1)

=

∫
𝑥 ∈X

∫
𝑎∈A

∫
𝑟 ∈R

𝛿 (𝑟 |𝑎, 𝑥)𝜋 (𝑎 |𝑥)Ω(𝑥) 𝑑𝑟 𝑑𝑎 𝑑𝑥 (2)

The goal of off-policy evaluation is to estimate the value of

a target policy 𝜋1 given a set of𝑛 tuples (𝑥0, 𝑎0, 𝑟0), (𝑥1, 𝑎1, 𝑟1),
..., (𝑥𝑛, 𝑎𝑛, 𝑟𝑛) drawn from a logging policy 𝜋0. The primary

challenge here is that there is amismatch between the actions

taken by the logging policy in the data and the actions that

1
Usually, we regard Ω (𝑥) as implicit and drop it from our notation:

E𝜋 [𝛿 (𝑟 |𝑎, 𝑥) ] =
∫
𝑎∈A

∫
𝑟∈R

𝛿 (𝑟 |𝑎, 𝑥)𝜋 (𝑎 |𝑥) 𝑑𝑟 𝑑𝑎

would’ve been taken by the target policy given the same

context.

1.1 An example of off-policy evaluation in
contextual bandits

An illustrative example of the contextual bandit setting is

a doctor recommending treatments for patients with heart

problems. The characteristics of the patient forms the con-

text: for example, their age, height, weight, sex, reported

level of pain and other relevant factors. The doctor’s recom-

mendation is the action. For example, the doctor could pick

one of three recommendations: exercise, drugs, or surgery.

The outcome of the patient is the reward. In this example,

we could set it to 1 if the patient was "cured" and 0 otherwise.

The doctor’s criteria for recommendation forms the policy;

for example, a policy could be to recommend exercise 75% of

the time to anyone below the age of 60, and drugs otherwise;

for patients of age 60 and above, recommend drugs 60% of

the time and surgery otherwise.

We would like to evaluate a new doctor, but without going

through the laborious process of giving recommendations

to hundreds of patients and waiting to discover the outcome.

One way this can be done is by grading the new doctor’s

treatment policy (𝜋1) according to the historical outcomes

of patients treated by another doctor (𝜋0). If the two doctors

recommend the same treatment for a patient, then we know

the historical outcome of that patient is an exact assessment

of 𝜋1 for that patient. The issue is that if the two doctors do

not recommend the same treatment for a patient, it’s not

possible to determine exactly what the outcome of the new

doctor’s policy would’ve been, since the data only records

the outcome of the treatment recommended by 𝜋0.

1.2 Approaches to off-policy evaluation
We present the two basic approaches to off-policy evalua-

tion: importance weighting and the direct method. These two
approaches are usually combined in a method called doubly
robust estimation.
We note a key assumption of both methods: the logging

policy must have support over all actions taken by the target

policy. Mathematically, this means 𝜋0 (𝑎 |𝑥) > 0 whenever

https://github.com/EricHe98/direct_method
https://github.com/EricHe98/direct_method
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𝜋1 (𝑎 |𝑥) > 0. Intuitively, a target policy’s action can only

be evaluated if there is some probability of seeing it under

the logging policy; otherwise the reward would be entirely

unknown because the logging policy has never explored

it. In the doctor example, if the new doctor recommends

heart surgery to a newborn infant when the original doctor

never has, there is no way to determine the outcome of that

treatment using the original doctor’s historical data.

1.2.1 Importanceweighting. Given our dataset (𝑥0, 𝑎0, 𝑟0),
(𝑥1, 𝑎1, 𝑟1), ..., (𝑥𝑛, 𝑎𝑛, 𝑟𝑛) with the actions drawn from a log-

ging policy 𝜋0, the samplemean

∑𝑛
𝑖=1 𝑟𝑖 is an unbiased estima-

tor of the logging policy’s value 𝑉 (𝜋0). Thus, our empirical

estimate of 𝑉 (𝜋0) can be written as

𝑉 (𝜋0) =
1

𝑛

𝑛∑
𝑖=1

𝑟𝑖 (3)

However, what we are interested in is an estimate of𝑉 (𝜋1).
Importance weighting corrects the action sampling bias from

the logging policy using a change of distribution to the target

policy. Each data point is weighted by the relative likelihood

of being seen in the target policy vs. the logging policy.

Mathematically, this can be written as

𝑉 (𝜋1) = E𝜋1
[𝛿 (𝑟 |𝑎, 𝑥)] (4)

=

∫
𝑎∈A

∫
𝑟 ∈R

𝛿 (𝑟 |𝑎, 𝑥)𝜋1 (𝑎 |𝑥) 𝑑𝑟 𝑑𝑎 (5)

=

∫
𝑎∈A

∫
𝑟 ∈R

𝛿 (𝑟 |𝑎, 𝑥)𝜋1 (𝑎 |𝑥)
𝜋0 (𝑎 |𝑥)
𝜋0 (𝑎 |𝑥)

𝑑𝑟 𝑑𝑎 (6)

= E𝜋0
[𝛿 (𝑟 |𝑎, 𝑥) 𝜋1 (𝑎 |𝑥)

𝜋0 (𝑎 |𝑥)
] (7)

and the empirical estimate of 𝑉 (𝜋1) would be

𝑉𝐼𝑊 (𝜋1) =
1

𝑛

𝑛∑
𝑖=1

𝑟𝑖
𝜋1 (𝑎𝑖 |𝑥𝑖 )
𝜋0 (𝑎𝑖 |𝑥𝑖 )

(8)

Importance weighting is guaranteed to give an unbiased

estimate of 𝑉 (𝜋1).
The importance weights

𝜋1 (𝑎 |𝑥)
𝜋0 (𝑎 |𝑥) can take on any posi-

tive value; large importance weights can introduce signif-

icant variance into the value estimates. Reducing the vari-

ance around the estimates given by the standard importance

weighting method is an active area of research; one method

is self-normalization, in which we normalize by the sum of

importance weights instead of by the count of data points:

𝑉𝑆𝑁 _𝐼𝑊 (𝜋1) =
( 𝑛∑
𝑗=1

𝜋1 (𝑎 𝑗 |𝑥 𝑗 )
𝜋0 (𝑎 𝑗 |𝑥 𝑗 )

) 𝑛∑
𝑖=1

𝑟𝑖
𝜋1 (𝑎𝑖 |𝑥𝑖 )
𝜋0 (𝑎𝑖 |𝑥𝑖 )

(9)

1.2.2 Direct method. Another well-known way to esti-

mate rewards in a contextual bandit setting is via the direct

method ("DM") of fitting a model to the rewards given the

context and action. This simply casts rewards prediction

problem as a standard supervised regression problem which

can be solved with any off-the-shelf model.

For example, suppose we implemented the direct method

by training |A| separate linear regressions 𝑓𝑎1 (𝑥), ..., 𝑓𝑎 |A| (𝑥)
with weights 𝜃𝑎1 , ..., 𝜃𝑎 |A| (𝑥) for each action with the square

loss function. Then the training objective for the 𝑘th linear

regression could be written as

argmin𝜃𝑘 ∈Θ
1

𝑛

𝑛∑
𝑖=1

(𝑟𝑖 − 𝜃𝑇𝑘 𝑥𝑖 )
2
1[𝑎𝑖 = 𝑘] (10)

where 1[𝑎𝑖 = 𝑘] is the indicator function taking value 1

if the 𝑖th action is 𝑘 and 0 otherwise.

One flawwith the training objectivewritten as is is that the

model is trained on the logging policy’s action distribution,

and will try to minimize rewards error according to that

action distribution. To get a model to minimize rewards error

according to the target policy’s action distribution, we can

incorporate importance weighting into the loss function:

argmin𝜃𝑘 ∈Θ
1

𝑛

𝑛∑
𝑖=1

(𝑟𝑖 − 𝜃𝑇𝑘 𝑥𝑖 )
2
1[𝑎𝑖 = 𝑘]

𝜋1 (𝑎𝑘 |𝑥𝑖 )
𝜋0 (𝑎𝑘 |𝑥𝑖 )

(11)

Given a fitted rewards estimator
ˆ𝑓𝜃 (𝑥𝑖 , 𝑎𝑖 ), we can obtain

our desired estimate 𝑉 (𝜋1) by summing the predicted re-

wards for each action, weighted by 𝜋1, over the values of 𝑥

in our dataset. Mathematically, this would be written as

𝑉𝐷𝑀 (𝜋1) =
1

𝑛

𝑛∑
𝑖=1

|A |∑
𝑘=1

ˆ𝑓𝜃 (𝑥𝑖 , 𝑎𝑘 )𝜋1 (𝑎𝑘 |𝑥𝑖 ) (12)

If
ˆ𝑓𝜃 is an unbiased estimator of𝛿 (𝑟 |𝑎, 𝑥)∀𝑎, 𝑥 , then𝑉𝐷𝑀 (𝜋1)

will also be unbiased. This is a fairly strong condition, how-

ever, as it implies we would have a perfect rewards estimator.

It is expected for a regression model trained on a policy

𝜋0 to generate an unbiased estimate of𝑉 (𝜋0), since this only
requires the average prediction to equal the average target

value:
1

𝑛

∑𝑛
𝑖=1

ˆ𝑓𝜃 (𝑥𝑖 , 𝑎𝑖 ) ≈ 1

𝑛

∑𝑛
𝑖=1 𝑟𝑖 . At least for the training

set, seeing this equality is a natural outcome when using the

square loss to train a model.

1.2.3 Doubly robust estimation. Doubly robust estima-

tion combines importance weighting and the direct method.

There are many doubly robust estimators; an example of one

is

𝑉𝐷𝑅 (𝜋1) =
1

𝑛

𝑛∑
𝑖=1

(
𝑉

𝑥𝑖
𝐷𝑀

(𝜋1) +
𝜋1 (𝑎𝑖 |𝑥𝑖 )
𝜋0 (𝑎𝑖 |𝑥𝑖 )

(𝑟𝑖 − ˆ𝑓𝜃 (𝑥𝑖 , 𝑎𝑖 ))
)
,

(13)

𝑉
𝑥𝑖
𝐷𝑀

(𝜋1) =
|A |∑
𝑘=1

ˆ𝑓𝜃 (𝑥𝑖 , 𝑎𝑘 )𝜋1 (𝑎𝑘 |𝑥𝑖 ) (14)
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The doubly robust estimator has some nice properties. The

estimate will be strictly better than IW or DM individually,

and has lower variance than IW when the DM estimate is

correlated with the true reward. Most interest around DM

methods can be attributed to their utility in doubly robust

estimators.

1.3 Utility of the direct method
DM is historically presented as an inaccurate method for

off-policy evaluation, generally only useful in comparison

to other approaches or as part of a doubly robust estimator.

From [3], the foundational paper on doubly robust estima-

tion:

... the IPS estimator is in practice less suscepti-

ble to problems with bias compared with the di-

rect method. However, IPS typically has a much

larger variance...

From [12], the paper presenting the POEM estimator:

In principle, since the logs give us an incomplete

view of the feedback for different predictions,

one could first use regression to estimate a feed-

back oracle for unseen predictions, and then use

any supervised learning algorithm using this

feedback oracle. Such a two-stage approach is

known to not generalize well.

However, such papers tend to use simple and high-bias

learning methods such as linear regression when implement-

ing DM. In principle, complex nonlinear models such as

neural nets or tree ensembles can be extremely effective DM

estimators if they are able to produce accurate estimates of

𝛿 (𝑟 |𝑎, 𝑥). Indeed, in the past decade, such models have seen

much greater adoption and performance improvements on

supervised learning problems. Recent research such as [2]

has suggested that more complex models can give better

performance on contextual bandits problems as well.

This paper contributes an empirical benchmark of the

utility of DM on a number of datasets, using not just standard

linear regression but also more complex nonlinear models

such as gradient boosting and neural networks.

2 Related Work
The contextual bandits setting has rich ties to reinforcement

learning, causal inference, missing value imputation, and

other problems which have some concept of distribution

mismatch. [3] established bounds on the bias and variance of

doubly robust value estimators in the contextual bandits set-

ting and provided the framework for translating full feedback

datasets into bandit datasets which we use for our experi-

ments; [7] and [5] do the same in the causal inference and

reinforcement learning settings, respectively.

Estimators have been designed specifically for rewards

prediction in partial feedback settings. The offset tree algo-

rithm introduced in [1] is used by [3] for constructing doubly

robust estimators; it trains a series of binary classifiers to

distinguish whether to pick one action over another. The

Q-learning algorithm introduced in [15] is a dynamic pro-

gramming algorithm for producing estimates of the expected

future reward of a given action and state in a reinforcement

learning setting. The Slates estimator from [13] is specialized

for off-policy evaluation in ranking problems, where every

permutation of a set of items can be an action. For this paper,

however, we are interested in using standard off-the-shelf

regression and classification models.

Methods which use complex models to perform rewards

estimation have seen great success. [6] introduced BanditNet,

a method to train deep neural networks on contextual bandit

feedback using a counterfactual risk minimization objective.

[9] presented the deep Q-learning
2
method in a reinforce-

ment learning setting, in which a deep convolutional neural

network is used to estimate the reward function in playing

a game of Atari. [2] presents a theoretical decomposition of

excess risk into approximation error, estimation error, and

"bandit error", in which IWmethods are susceptible to bandit

error but DM is not.

3 Datasets and Methodology
Natural bandit datasets are difficult to come by; this paper

benchmarks on only two true bandit datasets, "Zozo" and

"Hotels". To supplement this, we use publicly available clas-

sification datasets ("Yeast", "Statlog (Shuttle)", "DryBean",

"Letter"). Summary statistics of each dataset are given in

Table 1; we describe each dataset class in more detail below.

3.1 Bandit Datasets
3.1.1 Hotels. We pulled historical ranking logs from Rock-

etmiles, an online hotel booking platform, generated during

an AB test of two different ranking policies. In this setting,

the goal is to be able to use a rewards estimator trained on

the logs of one policy to accurately predict the value of the

second policy; doing so would obviate the need for a live AB

test in which the new ranking policy is exposed to real life

users, and allow for higher-quality offline experimentation.

The map to a bandit framework is as follows:

1. Each data point is an item (hotel).

2. The context 𝑥 comprises user, query, and item (hotel)

information such as the hotel price, whether the user

interacted with the hotel before, etc.

3. The action 𝑎 is the item’s ranking induced by the pol-

icy; unfortunately, the policies were deterministic (al-

beit based on certain data fields not included in the

context), so constructing a propensity estimator would

be difficult.

2
We call the rewards function 𝛿 (𝑎 |𝑥, 𝑦) , but in reinforcement learning, the

function determining the expected future rewards for an action is called

the𝑄 function.
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Table 1. Dataset characteristics

Name Type Data Points Feature Count

Yeast Classification (10) 1484 8

Statlog (Shuttle) Classification (9) 58000 9

DryBean Classification (7) 13611 15

Letter Classification (26) 20000 16

Zozo Bandit 10000 80

Hotels Bandit 1648481 29

4. The reward 𝑟 is the level of interaction the user had

with the item: a 0 if the item was not interacted with, a

1 if the hotel details page was opened, a 2 if a specific

hotel room was selected, and a 3 if the hotel room was

booked.

We retain only the top 3 items in each search request, as

those are immediately visible to the user without any need

to scroll down the webpage and provide good signal about

each policy’s preferences. We look only at search requests

in which the user made a booking (though the booked result

did not have to be one of the top 3 items).

Evaluation is as follows:

1. One of the two policies is selected to be the logging

policy; the other is the target policy. The dataset 𝐷0

corresponding to the logging policy is split into a train

set𝐷 train

0
and test set𝐷 test

0
. Splits are done by randomly

partitioning based on search request; each set contains

all the search results for half the search requests.

2. A rewards estimator 𝑓 (𝑥) is trained on 𝐷 train

0
. We tried

linear regression, gradient boosting regression, and a

gradient-boosting based ranking model called Lamb-

daMART as rewards estimators.

3. 𝐷 test

0
and 𝐷1, the dataset corresponding to the target

policy, serve as test sets. We predict the value on the

two test sets and compare with the empirical test set

value; the test set 𝐷 test

0
from the same policy is our

assessment of the ability of 𝑓 (𝑥) to perform on-policy

evaluation, while the test set 𝐷1 for the target policy

is our assessment of the ability of 𝑓 (𝑥) to perform

off-policy evaluation.

Amodeling and evaluation loop can be performed𝑀 times

with different bootstrap samples each time to build statistical

estimates around the mean and standard deviation of the

value estimates. We choose 𝑀 = 10 for each of the two

datasets.

3.1.2 ZOZO [11]. ZOZO is an online fashion retailer that

uses multi-armed bandits to recommend clothes to users.

Similar to Rocketmiles, this dataset is data from a real A/B

test of two ranking policies: Bernoulli Thompson Sampling

(BTS) and a fully randomized policy. This data lets us evaluate

off-policy performance for various estimators by comparing

the BTS estimate on the random logged data with the ground

truth value from the actual BTS logs.

While the full dataset consists of 26 million rows, we opted

to use a subsample of 10,000 observations due to time and

computational constraints.

Lastly, dataset was evaluated using a corresponding Python

library, provided by ZOZO, called obp (Open Bandit Pipeline).

3.2 Evaluating on Classification Datasets
Classification datasets can be interpreted as bandit datasets

where the optimal action is the correct label. We use pub-

licly available multi-class classification datasets from the UC

Irvine machine learning repository to simulate off-policy

evaluation; a short description of each multi-class dataset is

as follows:

1. Yeast [10]: each row is a protein, the target variable

is the localization site and the features are outputs of

various expert systems characterizing the protein and

DNA sequence properties.

2. Statlog (Shuttle): each row is a space shuttle design,

the target variable is the type of space shuttle and

the features are physical performance measures of the

design.

3. Dry Bean [8]: each row is a photograph of a bean, the

target variable is the type of dry bean and the features

are derived from the photograph.

4. Letter Recognition [4]: each row is a photograph of

a handwritten letter, the target variable is the letter

and the features are derived from the photograph.

3.2.1 From full feedback to bandit feedback. We mir-

ror the procedure of [3] in converting a classification dataset

into a bandit dataset. Suppose the dataset has𝐾 classes. Then

each data point in the classification dataset can be written

as (𝑥, 𝑙) where 𝑥 is the feature vector and 𝑙 ∈ 1, ..., 𝐾 is the

label corresponding to the correct class of 𝑥 .

This data point can be converted into a bandit data point

by:

1. keeping 𝑥 as is.

2. mapping the action set A to the 𝐾 class labels 1, ..., 𝐾 .

3. selecting an action 𝑎 ∈ 1, ..., 𝐾 according to an as-yet

undetermined policy.
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4. setting the reward 𝑟 to be 1 if the selected action

matches the correct class and 0 otherwise:𝛿 (𝑟𝑖 |𝑎𝑖 , 𝑥𝑖 ) =
1[𝑎𝑖 = 𝑙𝑖 ].

This methodology gives us full freedom to choose the

logging and target policies.

3.2.2 Setting the target policy. The target policy can be

an arbitrary function 𝜋1 (𝑎 |𝑥). We take a similar approach

to [3] and [14]. First, we split the dataset into training and

testing subsets with 70% and 30% of the data, respectively.

Then, we train a classification model 𝜈 (𝑥) on the train set

with full feedback labels, and use that model’s predicted

probabilities as the target policy. The model’s classification

accuracy on the test set is analogous to the target policy’s

value.

The choice of setting our target policy to the predictions of

a classification model trained on the full feedback replicates

the intuition that the target policy should ideally be an im-

provement over the logging policy.We use logistic regression

and gradient boosting trees as target policy classifiers.

3.2.3 Setting the logging policy. For one set of choices
of logging policy, we again follow [3], which is as follows:

with probability 𝜖 we select the "correct" action with reward

1, and the remaining 1−𝜖 probability is uniformly distributed

across the incorrect actions. We vary 𝜖 to take different val-

ues between 0.1 and 0.8. This choice is intended to artificially

replicate the notion that a logging policy has an imperfect,

but better-than-random idea of the correct action to take.

We term these logging policies "𝜖-correct logging policies".

Given such logging policy, we transform the training set

into a bandit dataset, and use the partial feedback of the

bandit dataset to build value estimators.

3.2.4 Rewards estimation. For each classification dataset,
we benchmark the following models for DM:

1. Linear regression

2. Random forest regression

In addition to directly training on the bandit dataset, we

also train models which reweight the loss of each data point

based on the importance weight. These DM estimators are

benchmarked against standard IW and SN_IW estimators,

and used in the construction of DR estimators.

4 Results
4.1 Hotels
The results of the experiments are shown in Tables 2 and 3.

Table 2 shows the performance of the estimators when evalu-

ated on the holdout test set of data from the policy they were

trained on, i.e. their on-policy performance, while Table 3

shows the corresponding off-policy performance on the data

of the policy they were not trained on.

The two policies are labeled "OP" (old policy) and "NP"

(new policy). For each policy and model, we report the fol-

lowing values:

1. Value: the empirical average reward of the evaluated

policy across our bootstrap sampling runs:

1

𝑀

𝑀∑
𝑗=1

(
1

𝑁

𝑁∑
𝑖=1

𝑟𝑖 𝑗

)
where 𝑟𝑖 𝑗 is the reward of the 𝑖th data point in the 𝑗 th

bootstrap sample.

The true value estimates on the bootstrap are fairly

stable; the old policy has true value 0.137336 and the

new policy has true value around 0.186435.

2. Bias: the average difference between the empirical

value and the model’s predicted value:

1

𝑀

𝑀∑
𝑗=1

(
1

𝑁

𝑁∑
𝑖=1

𝑟𝑖 𝑗 −
1

𝑁

𝑁∑
𝑖=1

ˆ𝑓𝑗 (𝑥𝑖 𝑗 )
)

3. Std: the standard deviation of the biases over the boot-

strap samples:√√√
1

𝑀

𝑀∑
𝑗=1

(
Bias𝑗 − Bias

)
2

where Bias𝑗 =
(
1

𝑁

∑𝑁
𝑖=1 𝑟𝑖 𝑗 − 1

𝑁

∑𝑁
𝑖=1

ˆ𝑓𝑗 (𝑥𝑖 𝑗 )
)
is the bias

on the 𝑗th bootstrap sample.

4. RMSE: the average root mean squared error between

the model’s prediction and the true reward:

1

𝑀

𝑀∑
𝑗=1

(√√√
1

𝑁

𝑁∑
𝑖=1

(𝑟𝑖 𝑗 − ˆ𝑓𝑗 (𝑥𝑖 𝑗 ))2
)

Note that this is a measure of the model’s ability to

estimate an individual reward, while the bias measures

the model’s ability to predict the average reward.

We did not find that more complex models like gradient

boosting and random forest were able to decrease the bias

over a linear regression baseline; in fact, simple linear regres-

sion had the least bias and RMSE among all the evaluated

methods. The ranking model performed especially poorly.

This is a reversal from the company’s own metrics, where

more complex ranking models had the best off-policy opti-

mization performance. It’s possible that this difference could

be due to the top-3 filter we implemented, which severely

limits the amount of data the DM models have access to and

tends to sample a subset of the "best" items.

All DM estimators were extremely good at producing unbi-

ased on-policy estimates, with the exception of the ranking-

based model; in fact the DM estimator bias tends to be about

the same size as the standard deviation in on-policy estima-

tion. On off-policy estimates, however, the bias was one or
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two orders of magnitude larger. In absolute terms, the off-

policy estimates had errors of about 10% away from the true

value, which makes it still usable for offline value estimates,

but not good enough to replace AB testing.

4.2 ZOZO
For the ZOZO data we tested off-policy performance for

inverse propensity weights (IPW), self-normalized inverse

propensity weights (SN), as well as direct method (DM) and

doubly-robust (DR) for three machine learning algorithms:

Logistic Regression (LR), Gradient Boosting (GB), and Ran-

dom Forest (RF).

The results show that IPW and SN_IPW are the most

consistent for off-policy estimation. The quality of the di-

rect method depends heavily on the underlying algorithm —

while Gradient Boosting outperforms IPW, Random Forest

does much worse. Direct Method also seems to have a very

low standard deviation (SD), indicating variance is reduced

in exchange for added bias.

Doubly-robust methods sit in between direct methods

and IPW — while they do not outperform IPW, they are

comparable, and they are considerably less biased than the

direct method (in exchange for more variance, of course).

Based on the ZOZO trial, it seems that direct methods

can outperform the importance-weighted approach in some

cases, but further work is required to ascertain what those

cases are, and whether they can be identifed in advance.

4.3 UCI: 𝜖-correct logging policies
4.3.1 Covariate Shift. As mentioned in Section 3.2.3, for

𝜖-correct logging policies, we experiment with five different

values of 𝜖 (0.1, 0.2, 0.4, 0.6, and 0.8) and report the RMSE

of the different estimators in Figure 1. The higher the 𝜖 ,

the stronger weight is put on the correct labels. With this

method, we can roughly control the degree of the "quantita-

tive" amount of covariate shift between our logging policy

and target policy. For example, with Yeast dataset, when 𝜖

is 0.1, our logging policy’s true value was 0.184 while our

target policy’s (Logistic Regression) true value was 0.431,

in which case we have a covariate shift between the two

policies.

We acknowledge that by changing 𝜖 , we can only control

the distance between the means of logging policy’s value

and the target policy’s value but not the similarity between

the shapes of logging and target policies’ distribution ("qual-

itative" aspect of covariate shift). Hence, experimenting with

different 𝜖 values would have limited capability for accu-

rately portraying the different degrees of covariate shifts.

Later, we elaborate more on these limitations from the re-

sults of our experiments.

In Table 5, we observed that RMSE of the "mean estima-

tor" is mostly coming from bias which we considered as

proxy for the "quantitative" degree of covariate shift.Later,

we elaborate more on these limitations from the results of

our experiments.

When 𝜖 is small (i.e 0.1, 0.2), we have covariate shift be-

cause the logging policy and target policy have different dis-

tribution; however, compared to the bias of "mean estimator",

which we roughly consider as the degree of covariate shift,

all the value estimators including direct methods showed

somewhat decent performance. With smaller 𝜖 , the sampling

distribution of the logging policy is similar to population

distribution of the dataset. In such case, even though we

have clear covariate shift situation, direct method estimators

performances were somewhat comparable to importance-

weighted methods.

On the other hand, as 𝜖 increases, we have covariate shift

situations where the sampled data from the logging policies

carry stronger bias towards correct labels. Then we start

to see rather interesting interactions between the logging

policy and the target policies.

In Figure 1, for the Bean dataset, the Logistic Regression

target policy has true policy value of 0.569, while the Gra-

dient Boost target policy has true policy value of 0.901. In

Logistic Regression target policy, the performance of direct

methods deteriorates quickly as we introduce more covariate

shifts; yet, when 𝜖 is small, direct methods performs better

than when 𝜖 is large while RMSE of the "mean estimator"

is smaller. For Gradient Boost target policy, since it’s true

policy value is close to 1, the RMSE of "mean estimate" de-

creases as 𝜖 increases. However, unlike Logistic Regression,

direct method does not perform well when 𝜖 is small. The

RMSEs of the "mean estimator" is minimized when 𝜖 is 0.4

and 0.8 for Logistic Regression and Gradient Boost target

policies relatively. In the case of Gradient Boost target policy,

by the design of the logging policy, we know that the distri-

bution of the logging policy becomes similar (in shape) to

the target policy. However, we cannot assume the same for

Logistic regression; the shape of the distributions of logging

and target policy does not have enough "similarity" for direct

method to perform well even though the RMSE of the "mean

estimator" is low.

Hence, in our 𝜖-correct logging policy, the usage of RMSE

of the "mean estimator" as proxy for degree of covariate

shift has its limitations. RMSE of the "mean estimator" could

be served as "quantitative" but not "qualitative" degree of

covariate shift. We observed that it would be difficult to

control the "qualitative" degree of covariate shift since we

do not have an appropriate numeric measure to estimate the

"similarities" in shape of the two distributions.

4.3.2 DM vs IW vs Doubly Robust method. In general,

simple direct method, without importanceweights, displayed

inferior performance compared to importance-weightedmeth-

ods. Direct methodsweremore inductive to bias coming from

covariate shift as we expected.
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Table 2. Hotel Rewards Estimation - On Policy Evaluation

Name True Value (On-Policy) Bias Std RMSE

0 OP - Boosting 0.137233 -0.000772 0.000707 0.165774

1 OP - Linear Regression 0.137395 -0.000399 0.001017 0.132199

2 OP - LambdaMART 0.137365 -0.298251 0.002409 0.555895

3 OP - Random Forest Regression 0.137157 0.000016 0.000849 0.143139

4 NP - Boosting 0.186631 -0.000270 0.000734 0.184320

5 NP - Linear Regression 0.186394 -0.000720 0.000991 0.146489

6 NP - LambdaMART 0.186658 -0.250004 0.003538 0.576260

7 NP - Random Forest 0.186704 0.000409 0.001256 0.158106

Table 3. Hotel Rewards Estimation - Off Policy Evaluation

Name True Value (Off-Policy) Bias Std RMSE

0 OP - Boosting 0.186435 -0.009941 0.001531 0.212893

1 OP - Linear Regression 0.186435 0.002677 0.000688 0.172784

2 OP - LambdaMART 0.186435 -0.442453 0.004265 0.699071

3 OP - Random Forest Regression 0.186435 -0.006005 0.001467 0.191687

4 NP - Boosting 0.137336 -0.010458 0.001054 0.158688

5 NP - Linear Regression 0.137336 -0.012108 0.000564 0.116803

6 NP - LambdaMART 0.137336 -0.115359 0.004427 0.418053

7 NP - Random Forest 0.137336 -0.023485 0.000603 0.132441

Table 4. ZOZO Off-Policy Evaluation (True value = 0.0042)

Name Estimate Bias SD

0 IPW 0.00458 0.000385 0.00194

1 SN_IPW 0.00481 0.000606 0.00220

2 DM_LR 0.00348 -0.000721 0.00002

3 DR_LR 0.00471 0.000505 0.00212

4 DM_GB 0.00390 -0.000298 0.00005

5 DR_GB 0.00470 0.000500 0.00208

6 DM_RF 0.00612 0.001922 0.00012

7 DR_RF 0.00456 0.000360 0.00228

Between direct methods with linear regression and ran-

dom forest regression, random forest regression generally

performed better then linear regression when more severe

covariate shift was present. However, as covariate shift was

less, random forest regression started to show the tendency

for over-fitting, resulting in introducing more bias.

For Doubly Robust method introduced by [3], both direct

methods with doubly robustness performed far superior to

simple direct methods and in many cases, they performed

marginally better than self-normalized importance weighted

estimator (SN-IW). However, we have observed that when

the performance of direct method deteriorates, doubly robust

estimators’ performance deteriorates as well.

In our experiments, overall, self-normalized importance

weighted estimator performed the best compared to all other

estimators when covariate shift was present. Occasionally,

doubly robust estimators and importance weighted direct

method estimators were marginally better than SN-IW esti-

mator, the benefit of the both methods seems less appealing

given the simplicity of SN-IWmethods. We have seen doubly

robust methods could get better with more expressive model

(i.e. Linear Regression vs Random Forest), however, search-

ing for appropriate model for direct methods and training

the model may not be ideal for the benefit we gain.
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Table 5. RMSE and Bias of different estimators on Yeast dataset

(a) RMSE

Estimators Mean IW SN-IW DM𝑙𝑖𝑛 DM𝑙𝑖𝑛−𝐼𝑊 DR𝑙𝑖𝑛 DM𝑟 𝑓 DR𝑟 𝑓

𝜖 = 0.1 0.230586 0.038746 0.060437 0.123741 0.101019 0.084015 0.122617 0.101043

𝜖 = 0.2 0.149218 0.040624 0.044120 0.180675 0.075421 0.067780 0.178689 0.101710

𝜖 = 0.4 0.032347 0.024389 0.033129 0.305396 0.090825 0.080538 0.301397 0.164905

𝜖 = 0.6 0.212140 0.013737 0.056179 0.399540 0.139565 0.112046 0.385640 0.254786

𝜖 = 0.8 0.385685 0.009861 0.052449 0.473719 0.208767 0.126289 0.460377 0.302798

(b) Bias

Estimators Mean IW SN-IW DM𝑙𝑖𝑛 DM𝑙𝑖𝑛−𝐼𝑊 DR𝑙𝑖𝑛 DM𝑟 𝑓 DR𝑟 𝑓

𝜖 = 0.1 -0.229663 0.015607 0.045150 0.122580 0.098681 0.081033 0.117334 0.096599

𝜖 = 0.2 -0.147416 0.014169 -0.007792 0.174921 0.033013 -0.006100 0.172575 0.087534

𝜖 = 0.4 0.027865 0.002688 -0.006319 0.304954 0.079110 0.023651 0.301176 0.160002

𝜖 = 0.6 0.211685 0.010169 0.041495 0.399312 0.137711 0.099735 0.385472 0.253085

𝜖 = 0.8 0.385618 0.009006 0.022552 0.473705 0.202949 0.079016 0.460348 0.301043

5 Discussion
There was no universal message across our experiments. The

performance of direct method was inconsistent.

In terms of model complexity, more complex estimators

produced better estimates than simpler estimators on certain

datasets or sampling schemes and worse performance on

others. For example, simple linear regression outperformed

on the Hotels dataset, while random forest regression was

the best performer on the Shuttle dataset. It seems that the

performance of a DM model heavily depends on its ability

to fit (and not overfit) the conditional rewards distribution

𝛿 (𝑟 |𝑎, 𝑥).
Relative to other off-policy evaluation methods, the direct

method would also outperform sometimes and underper-

form other times - although largely it underperformed. The

importance weighted estimators tended to have the least

bias. Doubly robust estimators combining both DM and IW

were always better than the DM alone, but were unable to

consistently outperform IW and self-normalized IW.

The importance weightingmethods, when theywere avail-

able, performed much more consistently across the multi-

class datasets. Self-normalizing the importance weights was

especially effective at culling the variance of the estimates.

6 Conclusion
To get a broader understanding of the utility of the direct

method, we benchmarked on a variety of datasets, while

using importance weighting and related methods for com-

parison when applicable. We found that the performances of

DM estimators are heavily mixed depending on the dataset,

model type, and choices of logging/target policies; no par-

ticular model was particularly better than the others, and

it was not possible to tell a priori whether DM would work

well on any given dataset. This is not entirely surprising,

since a perfect DM estimator can be trivially converted into

a reward-optimizing policy.

Although our experiments suggested importance weight-

ing was a consistent performer, we did not run any bench-

marks on cases where the true importance weights were

unknown and had to be estimated; this is an area of future

work that could better serve as comparison between DM and

IW approaches.

Due to infrastructure and time constraint problems, we

could only test on a number of smaller datasets, with most

datasets being several thousand rows and the maximum

dataset size being 1.6m rows; it’s possible that DM methods

were simply not leveraged to their fullest because they did

not have a large amount of data to learn the conditional

rewards distribution. Extending the benchmark to truly large

datasets is another promising avenue of future work.
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(a) Yeast data (n=1484) with LogReg as target policy (b) Yeast data (n=1484) with GrBoost as target policy

(c) DryBean data (n=13611) with LogReg as target policy (d) DryBean data (n=13611) with GrBoost as target policy

(e) Letter data (n=20000) with LogReg as target policy (f) Letter data (n=20000) with GrBoost as target policy

(g) Shuttle data (n=58000) with LogReg as target policy (h) Shuttle data (n=58000) with GrBoost as target policy

Figure 1. RMSE of estimators with different 𝜖 on UCI datasets
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